5.2 The Characteristic Equation

We will use an example to introduce what is a **characteristic equation** for a given matrix A. The solutions for such an equation are the eigenvalues of the matrix.

Example 1. Find the eigenvalues of
$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}^3$$
.
ANS: By def. We need to find the scalars λ such that
 $A\vec{x} = \lambda \vec{x} \iff (A - \lambda I) \vec{x} = \vec{0}$
has nontrivial solution. By the invertible matrix theorem,
this is equivalent to finding λ such that
 $\begin{bmatrix} A - \lambda I \end{bmatrix} = 0$
So we solve the equation $[A - \lambda I] = 0$
 $\begin{bmatrix} A - \lambda I \end{bmatrix} = 0$
 $A = \lambda I = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{bmatrix} = (5 - \lambda)^2 - 9 = \lambda^2 - 10\lambda + 16 = 0$
 $\Rightarrow (\lambda - \lambda)(\lambda - 8) = 0 \Rightarrow \lambda = 2 \text{ or } \lambda = 8$.
Thus $\lambda = 2$ and 8 are the eigenvalues.
On the next page, we define the equation
 $\begin{bmatrix} A - \lambda I \end{bmatrix} = 0 \text{ or det } (A - \lambda I) = 0$
as the characteristic equation for A.

We review the property of determinants below:

Theorem 3. Properties of Determinants

Let A and B be $n \times n$ matrices.

a. *A* is invertible if and only if det $A \neq 0$.

b. det $AB = (\det A)(\det B)$.

c. det $A^T = \det A$.

d. If A is triangular, then $\det A$ is the product of the entries on the main diagonal of A.

e. A row replacement operation on A does not change the determinant. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

Theorem. The Invertible Matrix Theorem (continued) Let A be an n imes n matrix. Then A is invertible if and only if r. The number 0 is not an eigenvalue of A.

The Characteristic Equation

The scalar equation $det(A - \lambda I) = 0$ in Example 1 is called the **characteristic equation** of A. From the argument of Example 1, we have the following fact:

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation

det
$$(A - \lambda I)$$

Example 2. Find the characteristic polynomial of each matrix using expansion across a row or down a column. [Note: Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]

 $\det(A - \lambda I) = 0$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -3 & 6 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
$$\det (A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -3 & 6 & 1 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 0 & 1 \\ -3 & 6 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{bmatrix}$$
Make a cofactor expansion along the third row

$$= (4-\lambda) \cdot (-1)^{3+3} \det\left(\begin{bmatrix} 1-\lambda & 0 \\ -3 & 6-\lambda \end{bmatrix} \right)$$
$$= (4-\lambda)(1-\lambda)(6-\lambda)$$
$$= -\lambda^{3} + 11\lambda^{2} - 34\lambda + 24$$

Example 3. For the given matrix, list the eigenvalues, repeated according to their multiplicities.

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1 \end{bmatrix}$$

You can use Thm 1 in §5.1. The eigenvalues are
 $5, -4, 1, 1$.
Or we compute
$$[A \cdot \lambda I] = \begin{bmatrix} 5 - \lambda & 0 & 0 & 0 \\ 8 & -4 - \lambda & 0 & 0 \\ 0 & 7 & 1 - \lambda & 0 \\ 1 & -5 & 2 & 1 - \lambda \end{bmatrix} = (5 - \lambda)(-4 - \lambda)(1 - \lambda)(1 - \lambda) = 0$$

$$= (5 - \lambda)(-4 - \lambda)(1 - \lambda)(1 - \lambda) = 0$$

Similarity

If A and B are n imes n matrices, then A **is similar to** B if there is an invertible matrix P such that $P^{-1}AP = B$, or, equivalently, $A = PBP^{-1}$.

Rem

hark:
$$PP'APP' = PBP' \Rightarrow A = PBP'$$

- Writing Q for P^{-1} , we have $Q^{-1}BQ = A$. So B is also similar to A, and we say simply that A and B are similar.
- Changing A into $P^{-1}AP$ is called a **similarity transformation**.

Theorem 4.

If n imes n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Warnings:

1. The matrices

$\lceil 2 \rceil$	1]	and	$\lceil 2 \rceil$	0
0	2		0	2

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B, then B = EA for some invertible matrix *E*.) Row operations on a matrix usually change its eigenvalues.

Example 4. Show that if A and B are similar, then $\det A = \det B$.

ANS: If A and B are similar, then by def

$$P^{-1}AP = B$$

Take det
both sides $det(P^{-1}AP) = det B$
 $\implies det(P^{-1}) det A det P = det B$
 $det(P^{-1}) = det P$
 $det(P^{-1}) = det P$
 $det P$
 $det A = det B$

Exercise 5.

It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find k in the matrix A below such that the eigenspace for $\lambda = 3$ is two-dimensional:

$$A = \begin{bmatrix} 3 & -2 & 4 & -1 \\ 0 & 5 & k & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ANS: Recall the eigenspace is the nullspace of the
matrix
$$A - \lambda I$$
. We reduce the augmented
matrix for the equation $(A - \lambda I)\vec{x} = \vec{0}$
Note $A - 3I = \begin{bmatrix} 0 & -2 & 4 & -1 \\ 0 & 2 & k & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -2 \end{bmatrix}$

This happens if and only if 4+k=0i.e. k=-4.