We will use an example to introduce what is a characteristic equation for a given matrix A. The solutions for such an equation are the eigenvalues of the matrix.
Example 1. Find the eigenvalues of $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$.
ANS: By def, we need to find the scalars λ such that

$$
A \vec{x}=\lambda \vec{x} \Leftrightarrow(A-\lambda I) \vec{x}=\overrightarrow{0}
$$

has nontrivial solution. By the invertible matrix theorem, this is equivalent to finding λ such that

$$
|A-\lambda I|=0
$$

So we solve the equation $|A \cdot \lambda I|=0$

$$
\begin{aligned}
& |A-\lambda I|=\left|\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right|=\left|\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right|=(5-\lambda)^{2}-9=\lambda^{2}-10 \lambda+16=0 \\
& \quad \Rightarrow(\lambda-2)(\lambda-8)=0 \Rightarrow \lambda=2 \text { or } \lambda=8 .
\end{aligned}
$$

Thus $\lambda=2$ and 8 are the eigenvalues.
On the next page, we define the equation

$$
|A-\lambda I|=0 \text { or } \operatorname{det}(A-\lambda I)=0
$$

as the characteristic equation for A.

We review the property of determinants below:

Theorem 3. Properties of Determinants

Let A and B be $n \times n$ matrices.
a. A is invertible if and only if $\operatorname{det} A \neq 0$.
b. $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
c. $\operatorname{det} A^{T}=\operatorname{det} A$.
d. If A is triangular, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.
e. A row replacement operation on A does not change the determinant. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

Theorem. The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then A is invertible if and only if
r . The number 0 is not an eigenvalue of A.

The Characteristic Equation

The scalar equation $\operatorname{det}(A-\lambda I)=0$ in Example 1 is called the characteristic equation of A. From the argument of Example 1, we have the following fact:

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation

$\operatorname{det}(A-\lambda I)$

$$
\operatorname{det}(A-\lambda I)=0
$$

Example 2. Find the characteristic polynomial of each matrix using expansion across a row or down a column. [Note: Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]
$A=\left[\begin{array}{rrr}1 & 0 & 1 \\ -3 & 6 & 1 \\ 0 & 0 & 4\end{array}\right]$
$\begin{aligned} \operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{ccc}1 & 0 & 1 \\ -3 & 6 & 1 \\ 0 & 0 & 4\end{array}\right]-\left[\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right]\right) \\ & =\operatorname{det}(1-\lambda \quad 0\end{aligned}$

Make a cofactor expansion along the third row

$$
\begin{aligned}
& =(4-\lambda) \cdot(-1)^{3+3} \operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
-3 & 6-\lambda
\end{array}\right]\right) \\
& =(4-\lambda)(1-\lambda)(6-\lambda) \\
& =-\lambda^{3}+11 \lambda^{2}-34 \lambda+24
\end{aligned}
$$

Example 3. For the given matrix, list the eigenvalues, repeated according to their multiplicities.

$$
A=\left[\begin{array}{rrrr}
5 & 0 & 0 & 0 \\
8 & -4 & 0 & 0 \\
0 & 7 & 1 & 0 \\
1 & -5 & 2 & 1
\end{array}\right]
$$

You can use Thm 1 in §5.1. The eigenvalues are

$$
5,-4,1,1
$$

Or we compute

$$
\begin{aligned}
& |A \cdot \lambda I|=\left|\begin{array}{cccc}
5-\lambda & 0 & 0 & 0 \\
8 & -4-\lambda & 0 & 0 \\
0 & 7 & 1-\lambda & 0 \\
1 & -5 & 2 & 1-\lambda
\end{array}\right|=(5-\lambda)(-4-\lambda)(1-\lambda)(1-\lambda)=0 \\
& \Rightarrow \lambda=5,-4,1,1 .
\end{aligned}
$$

Similarity
If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1} A P=B$, or, equivalently, $A=P B P^{-1}$.
Remark: $P P^{-1} A P P^{-1}=P B P^{-1} \Rightarrow A=P B P^{-1}$

- Writing Q for P^{-1}, we have $Q^{-1} B Q=A$. So B is also similar to A, and we say simply that A and B are similar.
- Changing A into $P^{-1} A P$ is called a similarity transformation.

Theorem 4.
If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Warnings:

1. The matrices

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] \text { and }\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

are not similar even though they have the same eigenvalues.
2. Similarity is not the same as row equivalence. (If A is row equivalent to B, then $B=E A$ for some invertible matrix E.) Row operations on a matrix usually change its eigenvalues.

Example 4. Show that if A and B are similar, then $\operatorname{det} A=\operatorname{det} B$.
Ans: If A and B are similar, then by def

$$
P^{-1} A P=B
$$

$\xrightarrow[\text { both sides }]{\text { Take et }} \operatorname{det}\left(P^{-1} A P\right)=\operatorname{det} B$

$$
\begin{aligned}
& \Longrightarrow \operatorname{det}\left(P^{-1}\right) \operatorname{det} A \operatorname{det} P=\operatorname{det} B \\
& \operatorname{det} P^{\left(P^{-}\right)}=\frac{1}{\operatorname{detex}} \\
& \Longrightarrow \frac{1}{\operatorname{det} P} \cdot \operatorname{det} P \operatorname{det} A=\operatorname{det} B \\
& \Rightarrow \operatorname{det} A=\operatorname{det} B .
\end{aligned}
$$

Exercise 5.
It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ. Find k in the matrix A below such that the eigenspace for $\lambda=3$ is two-dimensional:

$$
A=\left[\begin{array}{rrrr}
3 & -2 & 4 & -1 \\
0 & 5 & k & 0 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

ANS: Recall the eigenspace is the nullspace of the matrix $A-\lambda I$. We reduce the augmented matrix for the equation $(A-\lambda I) \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& \text { Note } A-3 I=\left[\begin{array}{cccc}
0 & -2 & 4 & -1 \\
0 & 2 & k & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & -2
\end{array}\right] \\
& {\left[\begin{array}{ll}
A-3 I & \overrightarrow{0}
\end{array}\right]} \\
& =\left[\begin{array}{cccc|c}
0 & -2 & 4 & -1 & 0 \\
0 & 2 & k & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
0 & 2 & k & 0 & 0 \\
0 & -2 & 4 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc|c}
0 & 2 & k & 0 & 0 \\
0 & 0 & 4+k ? & -1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

If the eigenspace is 2 -dimensional, we need two free varibles for the corresponding system.

This happens if and only if $4+k=0$
ie. $k=-4$.

